

SR320 THRU SR3200

SCHOTTKY BARRIER RECTIFIER Reverse Voltage - 20 to 200 Volts

Forward Current - 3.0Amperes

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- · Metal silicon junction ,majority carrier conduction
- · Guard ring for overvoltage protection
- · Low power loss ,high efficiency
- High current capability Low forward voltage drop
- · High surge capability
- · For use in low voltage .high frequency inverters. free wheeling, and polarity protection applications
- High temperature soldering guaranteed:260°C/10 seconds at terminals
- Component in accordance to RoHS 2015/863/EU

MECHANICAL DATA

- · Case: JEDEC DO-15 molded plastic body
- · Terminals: Plated axial leads, solderable per MIL-STD-750, method 2026
- · Polarity: color band denotes cathode end
- · Mounting Position: Any
- · Weight: 0.014ounce, 0.39 gram

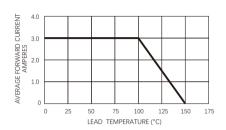
DO-15 1.0(25.4) MIN 0.102(2.6) DIA 0.300(7.60) 0.220(5.60) 1.0(25.4) ΜIN 0.034(0.85) 0.024(0.62) DIA

Dimensions in inches and (millimeters)

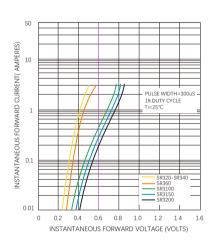
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(Ratings at 25°C ambient temperature unless otherwise specified ,Single phase ,half wave ,resistive or inductive load. For capacitive load, derate by 20%.)

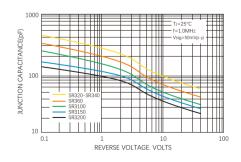
Parameters		Symbols	SR 320	SR 330	SR 340	SR 360	SR 3100	SR 3150	SR 3200	Units
Maximum repetitive peak reverse voltage		V_{RRM}	20	30	40	60	100	150	200	Volts
Maximum RMS voltage		V_{RMS}	14	21	28	42	70	105	140	Volts
Maximum DC blocking voltage		V _{DC}	20	30	40	60	100	150	200	Volts
Maximum average forward rectified current (See Fig.1)		I _{F(AV)}	3.0							Amps
Peak forward surge current 8.3ms single half sine-wave superimposed on rated load (JEDEC method)		I _{ESM}	80.0							Amps
Maximum instantaneous forward voltage at 3.0 A(Note 1)		V _F	0.55 0.70			0.70	0.85	0.90	0.95	Volts
Maximum instantaneous reverse current at rated DC blocking voltage(Note 1)	Tı=25°C		100				20			μΑ
	Tj=100°C	I _R	5				-			mA
	Tj=125°C		-				3			
Typical junction capacitance(Note 3)		C,		150		120	85	65	55	PF
Junction-Abient Typical thermal resistance(Note 2) _{Junction} -Lead		$R_{_{\theta JA}}$ $R_{_{\theta JL}}$	45.0 14.0							°C/W
Operating junction temperature range		Т,	-55 to+150							°C
Storage temperature range		T _{STG}	-55 to+150							°C

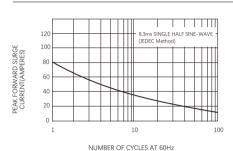

Notes: 1.Pulse test: 300µs pulse width,1% duty cycle

2.Thermal resistance from junction to lead, and/or to ambient P.C.B. mounted with 0.375"(9.5mm) lead length with 1.5 X1.5"(38X38mm)copper pads 3.Measured at 1.0MHz and reverse voltage of 4.0 volts



RATINGS AND CHARACTERISTIC CURVES OF SR320 THRU SR3200


FIG.1-FORWARD CURRENT DERATING CURVE


FIG.3-TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

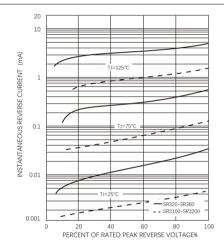

FIG.5-TYPICAL JUNCTION CAPACITANCE

FIG.2-MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT

FIG.4-TYPICAL REVERSE CHARACTERISTICS

Friendship Reminder

- JiNan JingHeng (hereinafter referred to as JH) reserves the right to make changes to this document and its products and specifications at anytime without notice.
- Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.
- JH makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does JH assume any liability for application assistance or customer product design.
- JH does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.
- No license is granted by implication or otherwise under any intellectual property rights of JH.
- JH's products are not authorized for use as critical components in life support devices or systems without express written approval of JH.