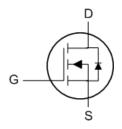


Features

- Low Rds(ON)
- Green Device Available
- 100% EAS Tested
- Advanced Trench MOS Technology

Applications


- Power Management in TV Converter.
- DC/DC Converter.

Product Summary

BVDSS	RDSON	ID
150V	56mΩ	23A

DFN 5X6 Pin Configuration

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage 150			
V_{GS}	Gate-Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current ¹	23	Α	
I _D @Tc=100°C	Continuous Drain Current ¹	16	Α	
ID@T _A =25°C	Continuous Drain Current ¹	4.5	А	
I _D @T _A =70°C	Continuous Drain Current ¹	3.8	А	
I _{DM}	Pulsed Drain Current ²	60	Α	
P _D @T _C =25°C	Total Power Dissipation ³	75	W	
P _D @T _A =25°C	Total Power Dissipation ³ 2.7		W	
T _{STG}	Storage Temperature Range -55 to 175		°C	
TJ	Operating Junction Temperature Range -55 to 175			

Thermal Data

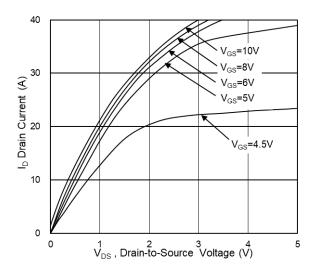
Symbol	Parameter	Тур.	Max.	Unit
R _{θJA}	Thermal Resistance Junction-ambient ¹		55	°C/W
$R_{ heta JC}$	Thermal Resistance Junction-Case ¹		2.0	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0 V , I_D =250 u A	150			V	
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V_{GS} =10V , I_{D} =10A		47	56	mΩ	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2		4	V	
	Drain-Source Leakage Current	V _{DS} =120V , V _{GS} =0V , T _J =25°C			1	uA	
IDSS	Diain-Source Leakage Current	V _{DS} =120V , V _{GS} =0V , T _J =55°C			5		
Igss	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =5V , I _D =10A		25		S	
Qg	Total Gate Charge			23			
Qgs	Gate-Source Charge	V _{DS} =75V , V _{GS} =10V , I _D =10A		5.8		nC	
Q _{gd}	Gate-Drain Charge			4.2			
T _{d(on)}	Turn-On Delay Time			16.2			
Tr	Rise Time	V _{DD} =75V , V _{GS} =10V , R _G =3.3Ω		18.6			
T _{d(off)}	Turn-Off Delay Time	I _D =10A		28.5		ns	
T _f	Fall Time			6.5			
Ciss	Input Capacitance			1190			
Coss	Output Capacitance	V _{DS} =75V , V _{GS} =0V , f=1MHz		73		pF	
Crss	Reverse Transfer Capacitance			4			
Diode Characteristics							
Is	Continuous Source Current ^{1,4}	V _G =V _D =0V , Force Current			20	А	
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V	
t _{rr}	Reverse Recovery Time	IF=10A, dI/dt=100A/µs,		45		nS	
Q _{rr}	Reverse Recovery Charge			138		nC	

Note:

^{1.}The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.


^{2.}The data tested by pulsed , pulse width $\,\leq\,300\text{us}$, duty cycle $\,\leq\,2\%$

^{3.}The power dissipation is limited by 150°C $\,$ junction temperature $\,$

^{4.} The data is theoretically the same as I_D and I_S , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

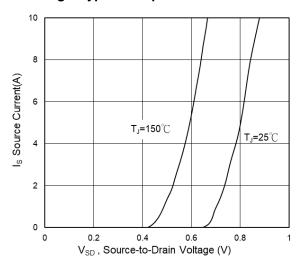


Fig.3 Source Drain Forward Characteristics

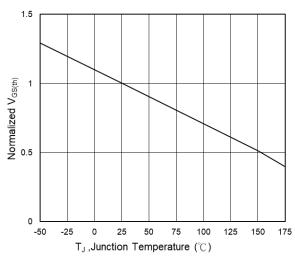


Fig.5 Normalized V_{GS(th)} vs T_J

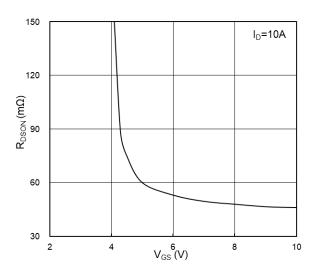
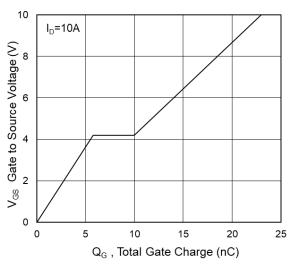



Fig.2 On-Resistance vs G-S Voltage

Fig.4 Gate-Charge Characteristics

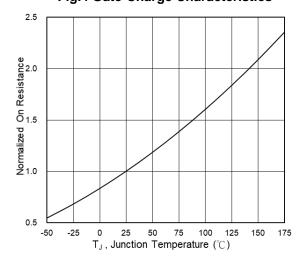
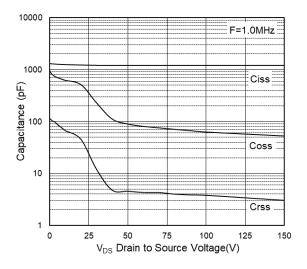



Fig.6 Normalized R_{DSON} vs T_J

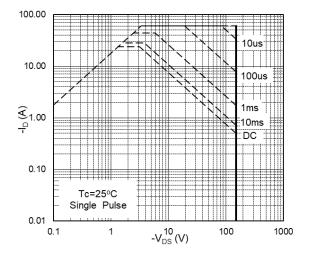


Fig.7 Capacitance

Fig.8 Safe Operating Area

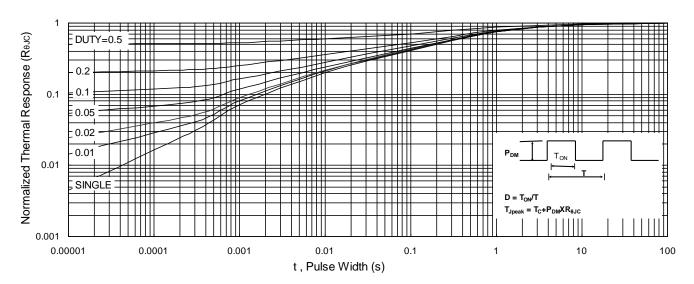


Fig.9 Normalized Maximum Transient Thermal Impedance

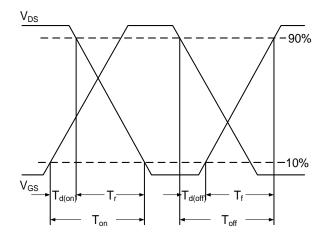


Fig.10 Switching Time Waveform

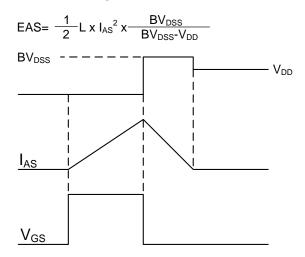
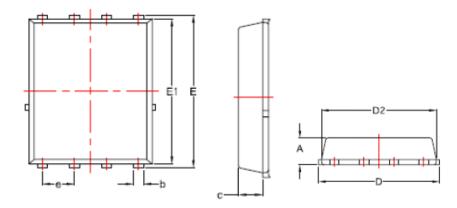
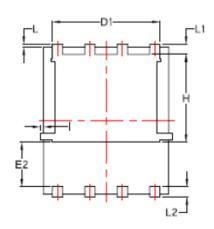
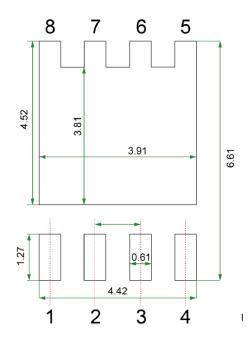




Fig.11 Unclamped Inductive Switching Waveform


DFN5×6 Outline

Land Pattern (Only for Reference) Unit: mm

0.440010	MILLIMETERS		INCHES		
SYMBOLS	MIN	MAX	MIN	MAX	
А	0.90	1.20	0.0354	0.0474	
b	0.30	0.51	0.0118	0.0200	
С	0.60	1.046	0.0236	0.0412	
D	4.80	5.45	0.1890	0.2146	
D1	4.11	4.31	0.1618	0.1697	
D2	4.80	5.20	0.1890	0.2047	
E	5.90	6.35	0.2323	0.2500	
E1	5.65	6.06	0.2224	0.2386	
E2	1.10	-	0.0433	-	
е	1.27 BSC		0.05	BSC	
L	0.05	0.25	0.0020	0.0098	
L1	0.38	0.61	0.0150	0.0240	
L2	0.30	0.71	0.0118	0.0280	
Н	3.30	3.92	0.1300	0.1543	
I	-	0.18	-	0.0070	

Friendship Reminder

- JiNan JingHeng (hereinafter referred to as JH) reserves the right to make changes to this document and its products and specifications at anytime without notice.
- Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.
- JH makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does JH assume any liability for application assistance or customer product design.
- JH does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.
- No license is granted by implication or otherwise under any intellectual property rights of JH.
- JH's products are not authorized for use as critical components in life support devices or systems without express written approval of JH.