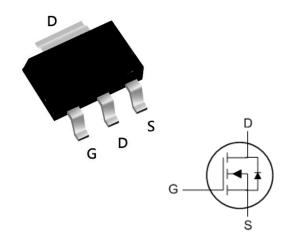


Features

- Green Device Available
- Super Low Gate Charge
- Excellent Cdv/dt effect decline
- Advanced high cell density Trench technology


Product Summary

BVDSS	RDSON	ID		
100V	100mΩ	3.3A		

Description

The JHL0034 is the high cell density trenched N-ch MOSFETs, which provides excellent RDSON and efficiency for most of the small power switching and load switch applications. The JHL0034 meets the RoHS and Green Product requirement with full function reliability approved.

SOT-223 Pin Configuration

Absolute Maximum Ratings

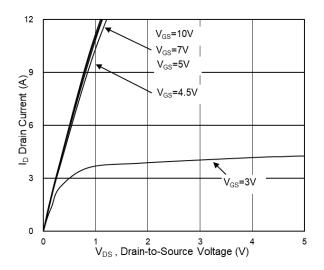
Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	100	V
V _G s	Gate-Source Voltage	±20	V
ID@T _A =25°C	Continuous Drain Current, V _{GS} @ 10V ¹	3.3	Α
I _D @T _A =70°C	Continuous Drain Current, V _{GS} @ 10V ¹	2.2	Α
I _{DM}	Pulsed Drain Current ²	12	А
P _D @T _A =25°C	Total Power Dissipation ³	2.2	W
T _{STG}	Storage Temperature Range	-55 to 150	℃
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction-ambient ¹		55	°C/W
Rejc	Thermal Resistance Junction-Case ¹		12	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V	
D	Static Drain-Source On-Resistance ²	V _{GS} =10V , I _D =3.3A		75	100	mΩ	
R _{DS(ON)}	Static Drain-Source On-Resistance-	V _{GS} =4.5V , I _D =2.7A		85	120	mΩ	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	1.2	2	2.5	V	
		V _{DS} =80V , V _{GS} =0V , T _J =25°C			1	uA	
I _{DSS}	Drain-Source Leakage Current	V _{DS} =80V , V _{GS} =0V , T _J =55°C			5		
I _{GSS}	Gate-Source Leakage Current	V _{GS} =±20V , V _{DS} =0V			±100	nA	
gfs	Forward Transconductance	V _{DS} =10V , I _D =3.3A		8		S	
Qg	Total Gate Charge (10V)			11.9			
Q _{gs}	Gate-Source Charge	V _{DS} =50V , V _{GS} =10V , I _D =3.3A		2.8		nC	
Q _{gd}	Gate-Drain Charge			1.7			
T _{d(on)}	Turn-On Delay Time			3.8			
Tr	Rise Time V_{DD} =50V , V_{GS} =10V , R_{G} =3.3 Ω			25.8			
T _{d(off)}	Turn-Off Delay Time	I _D =2A		16		ns	
Tf	Fall Time			8.8			
Ciss	Input Capacitance			450			
Coss	Output Capacitance	V _{DS} =15V , V _{GS} =0V , f=1MHz		55		pF	
C _{rss}	Reverse Transfer Capacitance			16			
Diode Cha	racteristics	·					
ls	Continuous Source Current ^{1,4} V _G =V _D =0V , Force Current				2.5	Α	
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =1A , T _J =25°C			1.2	V	
t _{rr}	Reverse Recovery Time			35		nS	
Qrr	Reverse Recovery Charge	IF=2A , dI/dt=100A/µs , T _J =25°C		17		nC	


^{1.} The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

^{2.} The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2% 3. The power dissipation is limited by 150°C junction temperature

^{4.} The data is theoretically the same as I_D and I_S , in real applications, should be limited by total power dissipation.

Typical Characteristics

Fig.1 Typical Output Characteristics

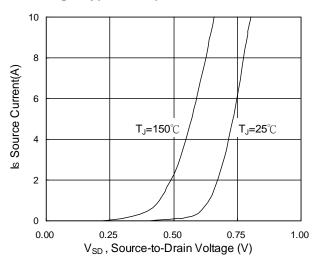


Fig.3 Source Drain Forward Characteristics

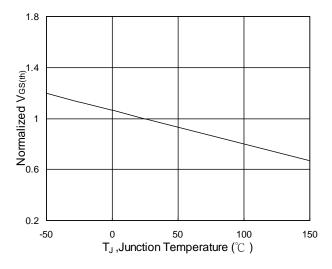


Fig.5 Normalized V_{GS(th)} vs. T_J

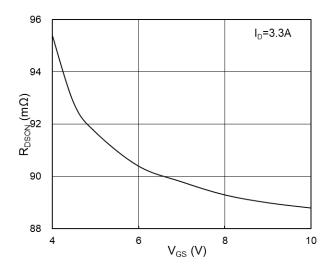


Fig.2 On-Resistance vs. G-S Voltage

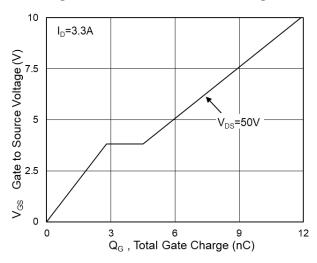


Fig.4 Gate-Charge Characteristics

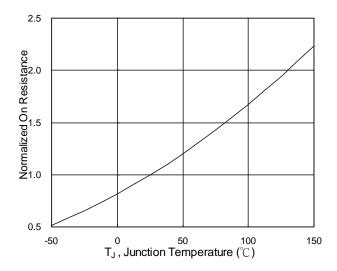
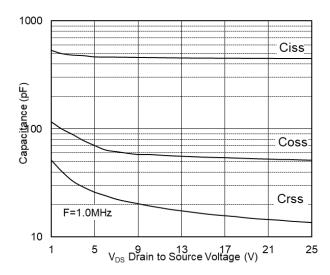



Fig.6 Normalized R_{DSON} vs. T_J

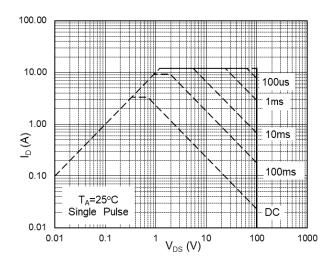


Fig.7 Capacitance

Fig.8 Safe Operating Area

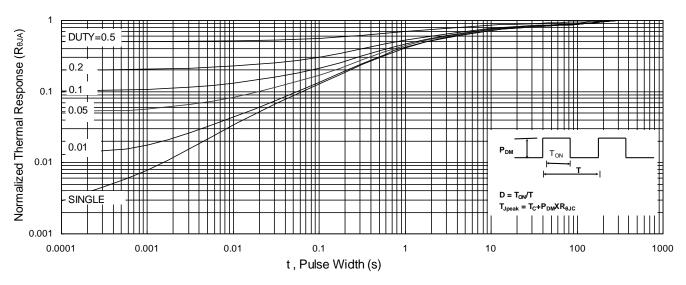


Fig.9 Normalized Maximum Transient Thermal Impedance

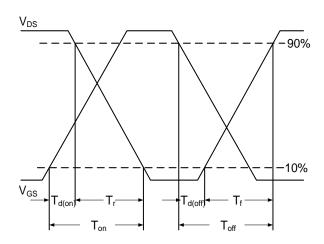


Fig.10 Switching Time Waveform

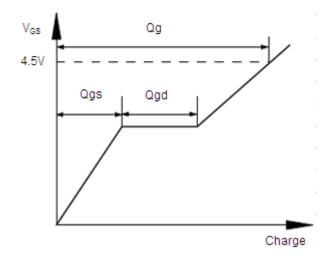


Fig.11 Gate Charge Waveform

SOT-223 Package Outline Dimensions

SYMBOLS	MILLIMETERS			INCHES			
OTWIDOLO	MIN	NOM	MAX	MIN	NOM	MAX	
А	1.50		1.80	0.059		0.071	
A2	0.02		0.10	0.001		0.004	
В	0.60	0.70	0.84	0.024	0.028	0.033	
С	0.23		0.35	0.009		0.014	
D	3.30	3.50	3.70	0.130	0.138	0.146	
D2	6.70		7.30	0.264		0.287	
E	2.90	3.00	3.10	0.114	0.118	0.122	
E2	6.30	6.50	6.70	0.248	0.256	0.264	
L	0.75	0.90	1.00	0.030	0.035	0.039	
θ	0°		10°	0°		10°	
е		2.30			0.091		

Friendship Reminder

- JiNan JingHeng (hereinafter referred to as JH) reserves the right to make changes to this document and its products and specifications at anytime without notice.
- Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.
- JH makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does JH assume any liability for application assistance or customer product design.
- JH does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.
- No license is granted by implication or otherwise under any intellectual property rights of JH.
- JH's products are not authorized for use as critical components in life support devices or systems without express written approval of JH.