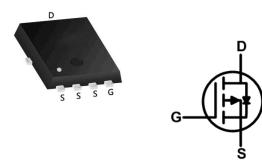


Features

- Advanced Trench MOS Technology
- 100% EAS Guaranteed
- Reliable and Rugged
- Green Device Available


Applications

 Power Management in Notebook
Computer, Portable Equipment and Battery Powered Systems.

Product Summary

BVDSS	RDSON	ID
-30V	3.3mΩ	-100A

DFN 5X6 Pin Configuration

Absolute Maximum Ratings

Symbol	Symbol Parameter		Units	
V _{DS}	Drain-Source Voltage	-30	V	
V _{GS}	Gate-Source Voltage	±20	V	
I⊳@Tc=25°C	Continuous Drain Current ^{1,6}	-100	A	
I _D @T _C =100°C	Continuous Drain Current ^{1,6}	-64	A	
I _{DM}	Pulsed Drain Current ²	-400	A	
EAS	Single Pulse Avalanche Energy ³	312	mJ	
las	Avalanche Current	-79	A	
P _D @T _C =25°C	Total Power Dissipation ⁴	138	W	
Tstg	Storage Temperature Range -55 to 150		°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit	
R _{0JA}	Thermal Resistance Junction-Ambient ¹		62	°C/W	
R _{θJC}	Thermal Resistance Junction-Case ¹		0.9	°C/W	

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

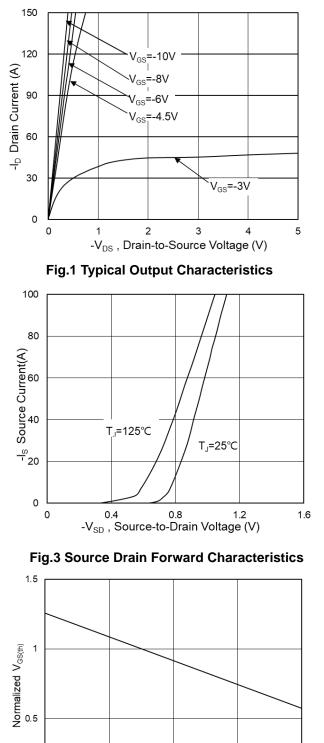
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
BV _{DSS}	Drain-Source Breakdown Voltage	V_{GS} =0V , I _D =-250uA	-30			V	
P	Statia Drain Source On Desistence ²	V _{GS} =-10V , I _D =-30A		2.6			
Rds(ON)	Static Drain-Source On-Resistance ²	V _{GS} =-4.5V , I _D =-20A		4.2	5.4	mΩ	
V _{GS(th)}	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =-250uA	-1.1	-1.7	-2.5	V	
	Drain-Source Leakage Current	V _{DS} =-24V , V _{GS} =0V , T _J =25°C					
IDSS		V _{DS} =-24V , V _{GS} =0V , T _J =55°C			-5	uA	
Igss	Gate-Source Leakage Current	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±10	uA	
gfs	Forward Transconductance	V _{DS} =-5V , I _D =-20A		25		S	
Qg	Total Gate Charge			140		nC	
Q_gs	Gate-Source Charge	V _{DS} =-15V , V _{GS} =-10V , I _D =-30A		22			
Q_{gd}	Gate-Drain Charge			31			
T _{d(on)}	Turn-On Delay Time			24			
Tr	Rise Time	V_{DD} =-15V , V_{GS} =-10V , R_G =3.3 Ω		31			
T _{d(off)}	Turn-Off Delay Time	I _D =-20A		120		ns	
Tf	Fall Time			45			
Ciss	Input Capacitance			7600			
Coss	Output Capacitance	V _{DS} =-15V , V _{GS} =0V , f=1MHz		1050		pF	
Crss	Reverse Transfer Capacitance			930			
Diode Characteristics							
ls	Continuous Source Current ^{1,5}	V _G =V _D =0V , Force Current			-100	Α	
V _{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =-1A , T _J =25°C			-1	V	
t _{rr}	Reverse Recovery Time	IF=-20A , di/dt=100A/µs ,		50		nS	
Qrr	Reverse Recovery Charge			54		nC	

Note :

1. The data tested by surface mounted on a 1 inch² FR-4 board with 2OZ copper.

2.The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

3. The EAS data shows Max. rating . The test condition is V_{DD} =-25V, V_{GS} =-10V, L=0.1mH, I_{AS} =-79A


4.The power dissipation is limited by 150°C junction temperature

5. The data is theoretically the same as I_D , in real applications, should be limited by total power dissipation.

6.The maximum current rating is package limited.

Typical Characteristics

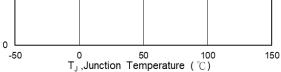


Fig.5 Normalized $V_{GS(th)}$ vs T_J

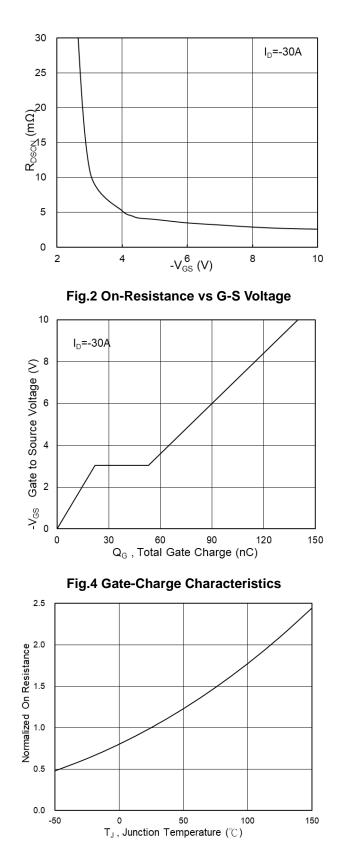


Fig.6 Normalized R_{DSON} vs T_{J}

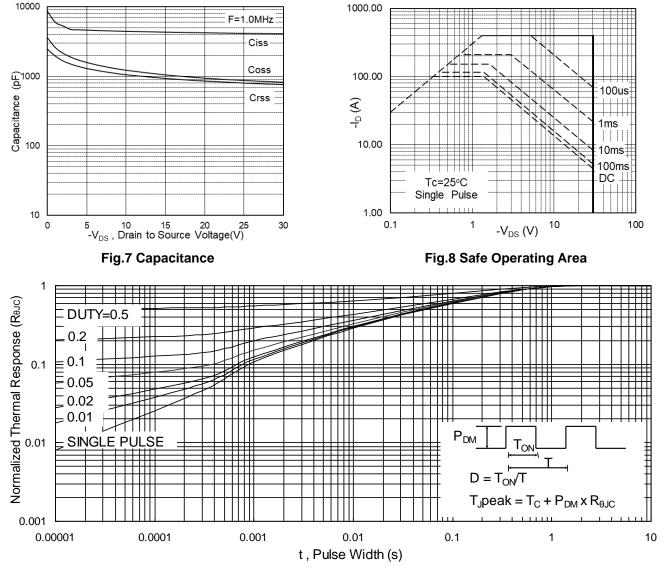
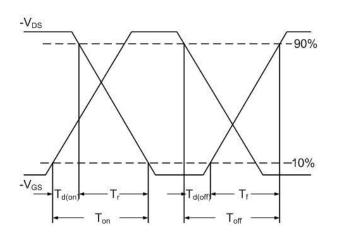
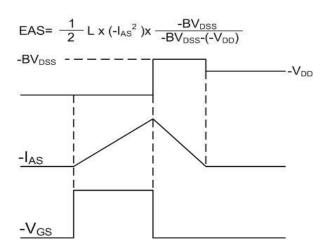
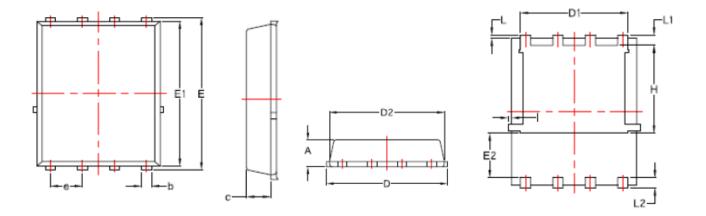
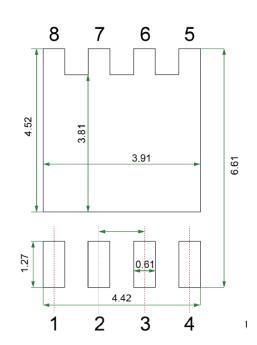


Fig.9 Normalized Maximum Transient Thermal Impedance


Fig.10 Switching Time Waveform



DFN5×6 Outline

Land Pattern (Only for Reference) Unit : mm

	MILLIMETERS		INCHES		
SYMBOLS	MIN	MAX	MIN	MAX	
A	0.90	1.20	0.0354	0.0474	
b	0.30	0.51	0.0118	0.0200	
с	0.60	1.046	0.0236	0.0412	
D	4.80	5.45	0.1890	0.2146	
D1	4.11	4.31	0.1618	0.1697	
D2	4.80	5.20	0.1890	0.2047	
E	5.90	6.35	0.2323	0.2500	
E1	5.65	6.06	0.2224	0.2386	
E2	1.10	-	0.0433	-	
е	1.27 BSC		0.05 BSC		
L	0.05	0.25	0.0020	0.0098	
L1	0.38	0.61	0.0150	0.0240	
L2	0.30	0.71	0.0118	0.0280	
Н	3.30	3.92	0.1300	0.1543	
I	-	0.18	-	0.0070	

Friendship Reminder

■ JiNan JingHeng (hereinafter referred to as JH) reserves the right to make changes to this document and its products and specifications at anytime without notice.

Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

■ JH makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does JH assume any liability for application assistance or customer product design.

■ JH does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

■ No license is granted by implication or otherwise under any intellectual property rights of JH.

■ JH's products are not authorized for use as critical components in life support devices or systems without express written approval of JH.