

DB151(DF15005)THRU DB157(DF1510)

GLASS PASSIVATED BRIDGE RECTIFIER Reverse Voltage: 50 to 1000 Volts Forward Current: 1.5 Amps

FFATURFS

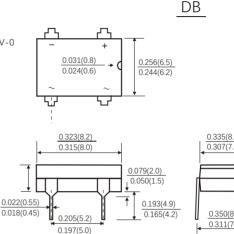
- Plastic package has Underwriters Laboratory Flammability Classification 94V-0
- · Glass passivated chip junction
- · Ideal for printed circuit board
- · High temperature soldering guaranteed:260°C/10 seconds at terminals
- Component in accordance to RoHS 2015/863/EU

MECHANICAL DATA

- · Case: DB molded plastic body
- · Epoxy: UL94V-0 rate flame retardant
- Terminals: Plated leads solderable per MIL-STD-750,method 2026
- Mounting Position: Any
- · Weight: 0.02ounce, 0.38 gram

TYPICAL APPLICATIONS

Used in AC/DC bridge full wave rectification for SMPS, lighting ballaster, adapter, charger, home appliances, office equipment, and telecommunication applications.

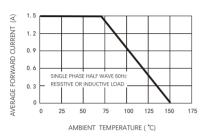

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

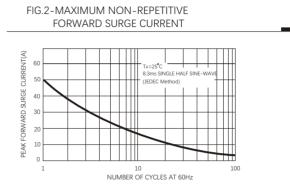
(Rating at 25 °C ambient temperature unless otherwise specified. Single phase ,half wave ,60Hz,resistive or inductive load. For capacitive load, derate current by 20%.)

Parameters		Symbols	DB151 DF 15005	DB152 DF 1501	DB153 DF 1502	DB154 DF 1504	DB155 DF 1506	DB156 DF 1508	DB157 DF 1510	Units
Maximum Recurrent Peak Reverse Voltage		V _{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS Voltage		V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage		V _{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current		I _(AV)	1.5							А
Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC method)		I _{FSM}	50						A	
Maximum Instantaneous Forward Voltage at 1.5 A DC		V _F	1.1						V	
Maximum DC Reverse Current at rated DC blocking voltage	T _A =25 ℃	I _R	5.0							μΑ
	Ta=125 ℃		100							
Typical junction capacitance(Note1)		С,	25						pF	
Typical thermal resistence(Note 2)		R _{eja}	40							°C/W
Operating junction and storage temperature range		T, T _{stg}	-55 to +150							C

Note: 1.Measured at 1MHz and applied reverse voltage of 4.0 Volts.

2. Thermal resistance junction to ambient mounted on P.C.B. With 0.5*0.5 inches(13*13mm) copper pads




Dimensions in inches and (millimeters)

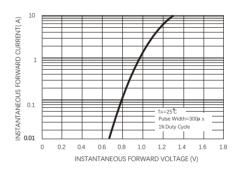

RATINGS AND CHARACTERISTIC CURVES DB151(DF15005) THRU DB157 (DF1510)

FIG.1-TYPRCAL FORWARD CURRENT DERATING CURVE

FIG4-TYPICAL FORWARD CHARACTERISTICS

FIG3-TYPICAL JUNCTION CAPACITANCE

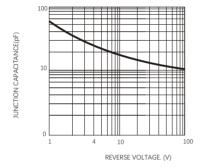
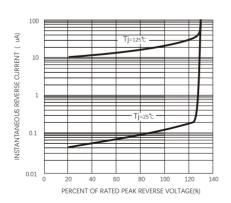



FIG.5-TYPICAL REVERSE CHARACTERISTICS

Friendship Reminder

- JiNan JingHeng (hereinafter referred to as JH) reserves the right to make changes to this document and its products and specifications at anytime without notice.
- Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.
- JH makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does JH assume any liability for application assistance or customer product design.
- JH does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.
- No license is granted by implication or otherwise under any intellectual property rights of JH.
- JH's products are not authorized for use as critical components in life support devices or systems without express written approval of JH.