

N-Channel Fast Switching MOSFET

FEATURES

- · Advanced Trench MOS Technology
- · 100% EAS Guaranteed
- · Super Low RDS (ON)
- · Green Device Available

BVDSS	RDS ON	ID		
100V	$4.5\mathrm{m}\Omega$	100A		

Application

- · MOTOR Driver
- · BMS.
- · High frequency switching and synchronous
- · rectification.

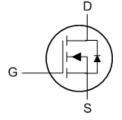


Table1 Absolute Maximum Ratings (Tc=25°C, unless otherwise specified)

Symbol	Parameter	Rating	Units	
V _{DS}	Drain-Source Voltage	10 0	V	
V _G s	Gate -Source Voltage	±20	V	
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V ^{1,6}	100	А	
I _D @T∈=100°C	Continuous Drain Current, V GS @ 10V 1,6	95	Α	
I _{DM}	Pulsed Drain Current ²	480	А	
EAS	Single Pulse Avalanche Energy ³	196	mJ	
las	Avalanche Current	28	А	
P _D @T _C =25°C	Total Power Dissipation ⁴	227	W	
T _{STG}	Storage Temperature Range -55		°C	
TJ	Operating Junction Temperature Range	-55 to 150	°C	

Thermal Data

Symbol	Parameter	Тур.	Max.	Unit
R øja	Thermal Re sistance Junction -Ambient ¹		62	°C/W
R⊕ıc	Thermal Resistance Junction-Case ¹		0.6	°C/W

N-Channel Fast Switching MOSFET

Table 2. Thermal Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0V$, $I_D = 250uA$	10 0			V
R ds(on)	Static Drain -Source On -Resistance ²	V _{GS} =10V , I _D =30A		3.7	4.5	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_D = 250uA$	2.0	3.0	4.0	V
lass	Drain Source Lea kage Current	$V_{DS} = 10 \ 0V \ , \ V_{GS} = 0V \ , \ T_{J} = 25^{\circ}C$			1	
l _{DSS}	Drain-Source Lea kage Current	V _{DS} =10 0V , V _{GS} =0V , T _J =12 5°C			10	uA uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 20V$, $V_{DS} = 0V$			±100	nA
gfs	Forward Transconductance	V _{DS} =5V , I _D =30A		50		S
Rg	Gate Resistance	$V_{DS}=0V$, $V_{GS}=0V$, $f=1MHz$		1		Ω
Qg	Total Gate Charge (10 V)			72		
Qgs	Gate -Source Charge	VDS =50V , VGS =10V , I D=20A		28		nC
Qgd	Gate -Drain Charge			15		
Td(on)	Turn-On Delay Time			35		
Tr	Rise Time	VDD=50V, VGS=10V, RG=3.0,		18		ne
Td(off)	Turn-Off Delay Time	ID=20A		45		ns ns
Tf	Fall Time			55		
Ciss	Input Capacitance			4725		
Coss	Output Capacitance	VDS =50V , VGS =0V , f=1MHz		609		рF
Crss	Reverse Transfer Capacitance			14		

Diode Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current 1,5	$V_G = V_D = 0V$, Force Current			100	А
V_{SD}	Diode Forward Voltage ²	V _{GS} =0V , I _S =50A , T _J =25°C			1. 3	\
t _{rr}	Reverse Recovery Time	IF=30A , dl/dt=100A/?s ,		70		nS
Qrr	Revers e Recovery Charge	T _J =25°C		170		nC

Note:

^{1.} The data tested by surface mounted on a 1 inch 2 FR -4 board with 2OZ copper.

^{2.}The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%

^{3.} The EAS data shows Max. rating . The test condition is V $_{DD}$ =25V, V_{GS} =10V, L=0.5 mH, I_{AS} =28A

^{4.}The power dissipation is limited by 150 °C junction temperature

^{5.} The data is theoretically the same as I_D and I_{DM} , in real applications, should be limited by total power dissipation.

^{6.}Package limitation current.

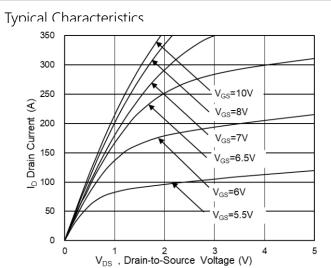


Fig.1 Typical Output Characteristics

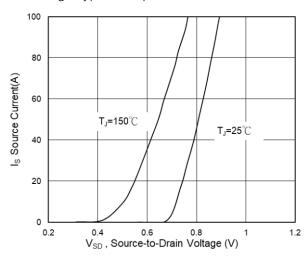


Fig. 3 Source Drain Forward Characteristics

Fig. 5 Normalized V_{TH} vs T_J

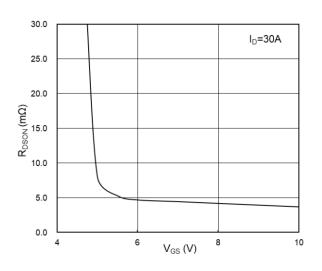


Fig.2 On -Resistance v s G -S Voltage

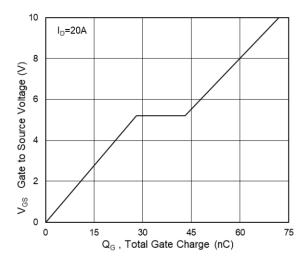


Fig. 4 Gate - Charge Characteristics

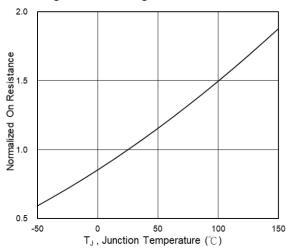


Fig. 6 Normalized R DSON vs T J

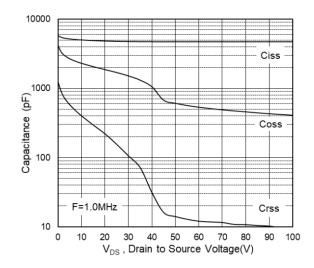


Fig. 7 Capacitance

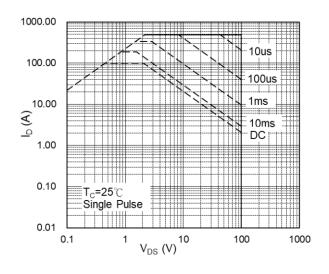


Fig.8 Safe Operating Area

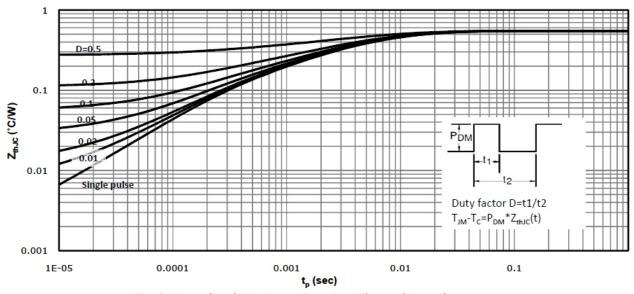


Fig. 9 Normalized Maximum Transient Thermal Impedance

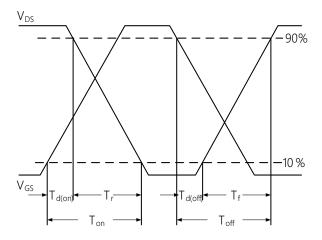


Fig. 10 Switch ing Time Waveform

JINAN JINGHENG ELECTRONICS CO., LTD.

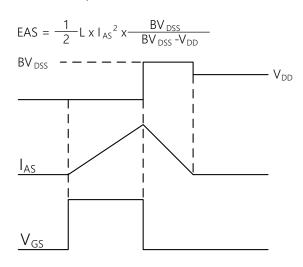


Fig. 11 Unclamped Inductive Switching Waveform HTTP://WWW.JINGHENG.CN

Friendship Reminder

¬JiNan JingHeng hereinafter referred to as JH reserves the right to make changes to this document and its products and specifications at anytime without notice.

Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

¬JH makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does JH assume any liability for application assistance or customer product design.

purchased or used for any unintended or unauthorized application.

☐ JH's products are not authorized for use as critical components in life support devices or systems without express written approval of JH.